Jung Hee Seo (Dept. of Mechanical Engineering)
Rajat Mittal (Dept. of Mechanical Engineering)
Rafael Tamargo (Dept. of Neurosurgery & Otolaryngology)
Justin Caplan (Dept. of Neurosurgery)
Prompt and accurate stratification of rupture risk is the “holy-grail” in treating intracranial aneurysms. Physics-based computational models of aneurysm biomechanics including the simulation of blood flow field and its effect on the vascular structures hold great promise in this context, but large sample sizes are essential for developing insights and reliable statistical correlations/metrics for the rupture risk. In this project, we will develop computational modeling approaches designed from ground-up to process large sample sizes of patient data, that are essential to develop the computer-aided risk stratification method.
