Data Analytics of Enormous Graphs: From Theory to Practice

Vladimir Braverman, PhD, (Department of Computer Science)

Carey Priebe, Professor, (Applied Mathematics and Statistics)

This research will aim to deliver new streaming tools to statistical inference on massive graphs as well as address some basic questions in statistics such as hypothesis testing. According to Dr Braverman, the preliminary results indicate that this direction is promising. In particular, it will be able to distinguish between Erdos-Renyi and Kidney-and-Egg random graphs. This novel approach is based on efficient computations of largest eigenvalues of streaming graphs. Dr. Braverman states “We use a combination of measure of concentration tools with streaming algorithms for linear algebra, and we plan to extend these results to more general distributions and submit a white paper in August.”


IDIES logo